
Certain particular cases of stability in first approximation 1 5 7  

in a region D :lJ Y (m) ~ ~ H, m ---- 0, i . . . .  (H ---- const). 
T h e o r e m  2. Let the systems (21) and (2) be connected by a relation of the type 

(5). If the zero solution of the system (2) is exponentially stable, then for sufficiently 
small ~? and M the zero solution of the system (21) will also be exponentially stable. 

The proof of Theorem 2 differs from that of Theorem 1 only in the fact that M in 
the inequality (11) is replaced by M ~- 7. 

The author is thankful to G. S. Iudaev for statement of the problem. 

REFERENCES 

1. C h e t a e v ,  N. G. , The Stability of Motion. (English translation), Pergamon Press, 
Book • 09505, 1961. 

2. I u d a e v ,  G. S . ,  Certain particular cases of stability in the first approximation 
of systems with lag. Izv. vuzov, Set. matem. ,  N --° 2(129), 1973. 

3. K r a s o v s k i i ,  N.  N. , Stability of Motion. (English translation), Stanford University 

Press, Stanford, California, 1963. Translated by L. K. 

UDC 531.011 

C~ EQUIVALENCE OF THE EQUATIONS OF MOTIC~ OF NONHOL(R4OMIC SYSTEMS 

PMM Vol.40, N --° 1, 1976, pp. 1~6-179 
la. P. ROMANOV 

(loshkar-Ola) 

(Received October 4, 1974) 

We prove the equivalence of the equations of motion of nonholonomic systems 
with constraints linear in velocities, obtained by various methods. At present, the 
equations of motion of nonholonomic systems exist in various forms. Naturally, 
the question of their identity to each other was brought up in [ 1 -  3], and the 
problem was also discussed in [4 --  8] and in the dissertation of M. I. Efimov (* ) .  

1. The author of [1 --  3] postulates that the final form of the equations of motion of 
a system obtained by transforming the general dynamic equations depends on the point 
at which the equations of nonholonomic constraints are taken into account. He states 
that in the general case of arbitrary nonholonomic systems with constraints which are 
linear in velocities, the equations constructed by different methods cannot be guaranteed 
to be identical. Volterra [9], Appell [10] and MacMillan [11] derive the equations of 
motion from the general dynamic equation in Cartesian coordinates and bring the non- 
holonomic constraints into the discussion at once. Harnel [12], Chaplygin [13] and Voro- 
nets [14] bring in the nonholonomic constraints after the general clynamzc equattons nave 
been transformed to the generalized coordinates. In the opinion of the author of [1--3], 
the equations of motion obtained using the methods of Volterra, Appell and MacMillan 
on one hand, and the methods of Voronets (Chaplygin) and Hamel on the other hand,~rill 
not, in general, be identical, i . e .  the systems of equations will not be equivalent to each 

_ j ,  , 

*) E f i m o v ,  M. I .  , On the Chaplygin equations for nonholonomic systems. Gandi- 
date's dissertation, Inst. mekhaniki, Akad. Nauk SSSR, 1953. 
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other. To refute this statement, it is sufficient to show that the equations of motion ob- 
tained by one of the methods of the first group (Volterra, Appell and MacMillan) coin- 
cide with the equations of motion obtained by one on the methods of the second group 
(Voronets, Hamel). We shall prove that the Appell equations coincide with the Voronets 
equations for any nonholonomic system with constraints linear in velocities. 

Let the nonholonomic constraints imposed on a system be given by the equations 
l 

qi" = E blkq~" -{- bi ( i = l + l ,  l + 2  . . . . .  n) (1.1) 
k=l 

Differentiating the constraint equations with respect to time, we obtain 
l 

q i " - -  Eb~kqb " ' + ' ' "  ( i = l + t ,  1 + 2 , . . . ,  n) (1.2) 

in which the terms containing no generalized accelerations have been omitted. The 
Appell equations for this system have the form [8] 

OS* _Q~* ( k - ~ i , 2  . . . . .  I) (1.3) 
Oqk'" 

Here S* denotes the acceleration energy transformed with the nonholonomic constraints 
taken into account and Qb* is the generalized force corresponding to the independent 
increment 8q~. If S and T denote the acceleration and kinetic energies of the system 
not yet transformed under the nonholonomie constraints, then [15J 

OS d aT 0T (,; = 1, 2, .. l . . . . .  n) (1.4) 
Oqf" ~ ' - ~  ~ -  Oqv "' 

The energy of acceleration S depends on the generalized accelerations q~'" entering 
it explicitly, and by means of the relation for qi'" given by (1.2). Therefore [8] 

it 
os* __ o s  + y ,  (1.5)  

Oqb'" Oql/" t=l+l  qi 

Let us denote by T* the kinetic energy of the system transformed with the constraints 
(1. 1) taken into account. Then 

0T ° 2 L  - °--Z-T + (1 .6)  
Oqk" Oqb" i=t+l  

Differentiating (1. 6) with respect to t ime, we obtain 

- -  Oqi" d t  ( 1 . 7 )  dt Oqb" t=t+x dt Oqi" dt Oq b" i=/+x 

Further transforming Eqs. (1. 3) using the relations ( L 4), (1.5) and (1.7) and el iminat-  
ing the quantities #T / #q~ and 0T / Off by means of the relations 

n 1 
0r*_aT + +---I  ( ~ = i ,  2, t, . ,  n) (1.8) 
Oq u Oq,, t I Oqi : 

we obtain the Voronets equations 

OT* __ E Bib OT __ d OT* OT* E bib Oq i ~ - -  Q~* ( k = t , 2  . . . .  , l) (1.9) 
dt Oqb" Oqk t=t+i  i : t + l  
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l n n dbtk $~1" Obtj ~' ~ Ob i ~ Oh, 
Bile -~ dt --"= ~ " ~  q -  =r-~ 10q i b~k) qJ" Oq---~ i=~1 Oq t bik 

valid for any nonholonomic system with constraints linear in velocities, since they were 
derived without any restrictions being placed on the coefficients of the constraint equa- 
tions and on the kinetic energy of the system. 

In the course of transforming the Appell equations into the Voronets equations we did 
not make any additional physical assumptions, and the only transformations we used were 
identity transformations. This implies that the Appe11 and the Voronets equations are 
identical. We must of course remember that the dependent generaUzed velocities must 
be eliminated from the expressions OT / Oqi" in the Voronets equations, using the con- 
straint equations (1. I). 

In the particular case of Chaplygin systems, the Appell equations coincide with the 
Chaplygin equations. 

A case of a nonholonomic system moving without the influence of the active forces, 
is given in [3]. The system is determined by three geometrical coordinates ql, qs, qs 
with one nonholonomic ideal constraint ql = qsqa'- The equations of motion are con- 
structed in the Chaplygin and the AppeU forms (see formulas (ad and (a14) in [3]) and 
compared, to reach the false conclusion that they differ explicitly from each other. In 
fact no difference exists ; if we use the constraint equation (al) to eliminate the depen- 
dent generalized velocity q~" from the expression OT / Oql" _~ q~" in the Chaplygin equa- 
tions (a0) ,then the equations of motion in the Chaplygin and the Appell forms will be- 
come identical. 

Naturally, we can also prove the equivalence of the equations of motion of nonholo- 
nomic systems constructed by the MacMillan or Volterra methods with those constructed 
by the Voronets or Hamel methods. 

S. Let us now pause on the Hamel equations [12]. In the opinion of the author of [8] 
the Hamel method can be used to obtain two, quite different systems of equations of mo- 
tion, depending on at which point we take the nonholouomic constraints into account, 
whether it is before, or after differentiating the expression for the kinetic energy with 
respect to the quasi-velocities. But the very process of deriving the Hamel equations 
shows that these equations contain the derivatives of the kinetic energy T with respect 
to all quasi-velocities, therefore the nonholonomic constraints must not be taken into 
account when constructing 7' ; they can be brought in only after calculating the kinetic 
energy derivatives with respect to the quasi-velocities [8]. This implies that the Hamel 
method yields a single, unique system of equations of motion, and this system will be 
equivalent to systems obtained by other methods. 

3. We shall point out the error made by the author of [4] in constructing the equa- 
tions of motion ofa gyro gimbal, using the Volterra method. In [4] the author investigated 
the motion of a gyro gimbal with a linear nonholonomic constraint ct" --  xp" sin O ~ 0 
imposed on it, and the Volterra method was used to derive the system of equations of 
motion of the gimbal (see Eqs.(20) in [4]). The author used an inconsistent system of 
five equations with four unknowns. From this system he separated a system of four equa- 
tions, assumed the fifth equation to be compatible and solved it in the bilinear covari- 
ants of the nonholonomic coordinates. This however contradicts the rules of higher alge- 
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bra. Let us obtain the correct  equations of motion of a gyro g imbal  in nonholonomic 
coordinates using the Volterra method given in [15]. Setting ~" = Pl, ~" = p2, ?" = Ps, 

~" = P4, ~" = pl /s in  ~ and assuming 

6&z - -  d&z = 0, 6d~ - -  d613 = 0, 6d? - -  d6¥ = 0, 6dO - -  d6{t = 0 (a. 1) 

we obtain d cos 
8~0" - -  ~ 8~ - -  sin2 0 (~ 'Sa  - -  a'80) (3.2)  

Further, t ramforming the general  contral  equation [8] 

?l ~ n 

y, 
s = l  Oqs" qs s=l  s=l 

Q,6q, 

with the genera l ized  coordinates ql = a ,  q~ = 8, qa - -  Y, q4 = O, q5 = ¢ and the re la-  
tions (3.1)  and (3 .2)  taken into account,  we obtain the system of equations of motion of 
the gyro g imbal .  This system coincides with Eqs. (22) of [4] obtained by the Chaplygin 
method.  The equations obtained by the author of [4] using the Hamel  method are, as 
expected ,  ident ica l  to the equations obtained by the Chaplygin method. Thus we find no 
difference between the equations of motion constructed by different methods for this case, 
and i t  follows that the conclusions of the author of [4] were erroneous. 

Everything we said above impl ies  that the equations of motion of the nonholonomic 
systems obtained by different  methods will  be ident ica l ,  i . e .  their  final form does not 
depend on the stage of computat ion at which the constraints are taken into account.  The 
choice of the method of constructing the different ial  equations of motion is governed by 
the computa t ional  convenience,  and this point of view was also endorsed by Lur 'e  in [8]. 
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A version of the geometrically nonlinear theory of elastic multilayered shells 
subjected to a nonconservative load is proposed. Transverse shear strains in the 
layers and strains in the direction of the normal to the middle surface are taken 
into account. As a rule, a description of the nonstationary dynamical processes 
associated with shell buckling can be performed on the basis of a geometrically 
nonlinear theory [1]. The behavior of multilayered plates and shells under large 
deflections has been examined in [2--5]. A variational formulation, which is 
valid for conservative loads acting on a shell, is used in [5] to derive the geomet. 
ricaily nonlinear equations. The variational principle is formulated in this l~per 
in a form also applicable in the case of no potential of the external forces. One 
of the advantages of the approach developed here as compared with the results 
of [5] is the additional possibility of describing the local dynamical buckling of 
the shell in modes associated with the change in its thickness. 

1. V&r iAt iona l  p r i n c i p l e  for a t h r e e - d i r n e a t i o n a l  b o d y .  Thevari-  
ational principle of elasticity theory for a three-dimensional body under large displace- 
ments is written as follows: 

t t  
t "1 

+ z '~ 8 ~ -  ~li.trl~i).~ + 

to 
t aul 

l (u~ -- U.) O~'n,dS) = O, 

6P t = 0 

at J dV + Ptuid3 
o g  

i, k = t , 2 ,  3 

Here 

(1.2)  

E ikj~ is the elasticity tensor, p is the material density, ui are the displacement 


